Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger.

نویسندگان

  • S K Agrawal
  • M G Fehlings
چکیده

There is evidence that intracellular Na+ entry potentiates hypoxic-ischemic cell death by causing cytotoxic cell edema, intracellular acidosis, and gating of Ca2+ entry by reverse activation of the Na(+)-Ca2+ exchanger. In this study, we examined the role of Na+ in mediating traumatic injury to spinal cord axons. Dorsal column segments from adult rats (n = 87) were isolated and maintained in an in vitro recording chamber while being superfused with oxygenated Ringer's solution (95% O2/5% CO2, 25 degrees C). Selected experiments (n = 10) also were done at 33 degrees C. Compound action potentials (CAP) were recorded from microelectrodes. Injury was performed by compression of the dorsal column segment for 15 sec with a modified aneurysm clip exerting a closing force of 2 gm. With injury, the CAP decreased to 72.1 +/- 9.6% of baseline values. Removal of extracellular Na+ and replacement with the impermeant cation N-methyl-D-glucamine enhanced recovery of the CAP to 98.3 +/- 18.3% (p < 0.05) of baseline. The Na+ channel blockers tetrodotoxin and procaine also improved recovery of the CAP to 96.3 +/- 23.7% (p < 0.05) and 82.8 +/- 4.6% (p < 0.05) of baseline values, respectively. In contrast, increasing Na+ permeability with veratridine resulted in greater attenuation of CAP amplitude after 1 hr of trauma (60.1 +/- 8.4%, p < 0.05). Similarly, prevention of extrusion of Na+ from the intracellular compartment by inhibiting the Na(+)-K(+)-ATPase pump with ouabain resulted in greater attenuation of CAP amplitude at 1 hr after trauma (56.7 +/- 3.6%, p < 0.05). The Na(+)-H+ exchange blockers amiloride (100 microM) and harmaline (100 microM) significantly improved recovery after injury to 89.6 +/- 17.0% (p < 0.05) and 85.7 +/- 7.2% (p < 0.05) of baseline, respectively. However, administration of the Na(+)-Ca2+ exchange blockers benzamil (100 or 500 microM) and bepridil (50 microM) was ineffective. In summary, reduction of extracellular Na+ confers neuroprotection after spinal cord injury in vitro. Intracellular sodium rises appear to be mediated by voltage-gated Na+ channels. Blockade of the Na(+)-H+ exchanger also is neuroprotective, possibly by reducing intracellular acidosis. Furthermore, prevention of extrusion of intracellular Na+ by the Na(+)-K(+)-ATPase pump exacerbates the effects of compression trauma. However, reverse operation of the Na(+)-Ca2+ exchanger does not explain the injurious effects of Na+ in traumatically injured CNS white matter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE.

Axonal degeneration contributes to the development of non-remitting neurological deficits and disability in multiple sclerosis, but the molecular mechanisms that underlie axonal loss in multiple sclerosis are not clearly understood. Studies of white matter axonal injury have demonstrated that voltage-gated sodium channels can provide a route for sodium influx into axons that triggers reverse op...

متن کامل

Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium.

BACKGROUND In the failing human heart, sarcoplasmic reticulum (SR) calcium handling is impaired, and therefore, calcium elimination and diastolic function may depend on the expression of sarcolemmal Na+-Ca2+ exchanger. METHODS AND RESULTS Force-frequency relations were studied in ventricular muscle strip preparations from failing human hearts (n=29). Protein levels of Na+-Ca2+ exchanger and S...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.

White matter of the mammalian CNS suffers irreversible injury when subjected to anoxia/ischemia. However, the mechanisms of anoxic injury in central myelinated tracts are not well understood. Although white matter injury depends on the presence of extracellular Ca2+, the mode of entry of Ca2+ into cells has not been fully characterized. We studied the mechanisms of anoxic injury using the in vi...

متن کامل

SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models.

The effect of the newly synthesized compound 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400) on the Na+-Ca2+ exchanger (NCX) was investigated and compared against that of 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943). In addition, the effects of SEA0400 on reperfusion injury in vitro and in vivo were examined. SEA0400 was extremely more potent than KB-R7943 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 1996